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The local structure of fiow near the singular point of a pointed profile in a 
supersonic stream of non-heat-conducting gas with a shock wave attached to 
the profile leading edge. Gasdynamic functions are taken in the form f = 
f,, + fi + o (fr), where f0 corresponds to the flow past an infinite rectilin- 
ear wedge. L~eari~~on with respect to f0 results in some boundary value 
problem in an angle. Its solution is obtained in explicit form, and its proper- 
ties are investigated. It is shown that when f0 relates to supersonic flow, 
then f1 z 0. In the case of subsonic flows a sequence of nonzero eigenfunc- 
tions jrfm) are obtained. The first fit”) are considered in transonic form- 
ulation. Difference between “strong” and “weak“ shock waves is established, 
Both, homogeneous (rectilinear profile and uniform oncoming stream) and 
inhomogeneous cases are investigated. 

1. Let a smooth pointed profile be placed in a supersonic stream. We assume the 
upper and lower shock waves attached to the profile, hence they can be considered in- 
dependently. We shall use the notation: P for pressure, p for density, M for the 
Mach number, 4 for the velocity modulus, and 8 for the angle of inclination of 
velocity to the z -axis in the direction of flow, Let a be the angle of inclination 
of the shock wave at the leading edge and fl the angle of the profile at that point. 
Pressure and density are normalized with respect to the corresponding parameters of 
the oncoming stream whose Mach number we denote by .&i,, 

We shall use equations of gasdynamics of the form 

wa 7 
a8 ap o 

+ an = 

pq= g + (1 - MS) -!& = 0 

(1.1) 

where a/& and a/~~ are derivatives along streamlines and perpendicular to them. 
We represent the solution in the neighborhood of the leading edge in the form f = 

fo + fi + ..a, where f. is the main part which defines the flow past an infin- 
ite wedge with a plane shock wave attached to it. Generally f. = f. (cp) (4, is the 
polar angle). But the functions in system (1. #I.) do not depend on cp t hence for small 
perturbations, after the substitution E = s,,, q = n,ll - IMosI*/*, and or = 
P,V - Mosj”f* f (~~~*), where s,, and n, are rectangular coordinates (see Fig. 
1). we obtain 
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ae, 
h 

- sign (1 - Mas) -$$ = 0 (1.2) 

4 

J( K % 

--+Aw 
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The region of solution determination is bound- 
ed by the half-lines q = 0 (the body) and q 

= kg (wave), where k = 11 - Mo2rlp tg (a 

- p). Let us determine the boundary condi- 
tions at the wave. 

Fig. 1 

Let the polar equation of the shock wave be 

of the form cp = a + 6 (r) , where cp is 
the wave angle of inclination to the 5 -axis. 
Then ‘p = a -j- 6 -j- arctg (r6,). In t?ie 
neighborhood of the leading edge cp=a+ 
W,. The value of any gasdynamic function 

f (r, ‘p) along the wave is determined by its inclination f = f,, (CJJ) + fr (r, cp) = 
F (9). Neglecting the term &3fa/&p, we obtain 

Ma) +a* + fl (r, a) = F(a) + (q)(rQ, 

Since f. (a)=F (a), hence fr (r, a) = - Gdf,,ldrp f (dF (a)/@) (d),. Thus 

P,(r,, a) = (dP (4ldl)) (rb and 0, (r, a)= (&I (a)/@) (r-6),, from which 

+ Or (r, a) = -$-P,(r, a), li) = a (1.3) 

using the relations at the shock wave 

P = [2yM,2sin2$ - (y - 1)l / (y + 1) 

from (1.3) we derive fcr system (1.2) the required boundary condition 

Ao, - B0, = 0 (1.4) 

A = pt,qo2 1250 (1 f- CO)2 ctg2 8,, - -+ (1 + Co2 ctg2 &,)I x 

(yM2,I 1 - MO2 p>-1 
2 

B = 25,,a ctg 13~ sinV2 8a, 5-l = s - 1 

The boundary condition at the body will be derived later. 
The considered boundary value problem has two dimensionless parameters: M, 

and p. We fix M, and analyze the dependence on the “geometrical” parameter 

for which we take not /3 but a, since the dependence of the unperturbed solution 

(flow past a wedge) on fi is not uniquely defined. The variation range of a is from 
arcsin (Mm-‘) (d g e enerate shock wave) to rr / 2 (plane normal wave). 

we denote by a, the value of a for which MO = 1 and by a* the angle which 
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corresponds to the ma~mum turn of the (~per~rbed) stream, i. e. at the point of 

transition from the weak section of the shock polar to the strong one. 
a*. 

Clearly a* < 
We introduce function b (a) = A / B some of whose properties will be 

subsequently required. They are obtained by simple calculations. We have h (a) 

>o when a<a*, h (a) < 0 when a > a*, and h (a*) = 0, and h 

(a*) = + 00. 
Note that the bounda~ condition (1.4) may also be written in the form 

ae,/ar = 0 

where 1, is at angle X to the boundary such that tg ‘x, = h. 
(I*51 

2. Let us define the boundary condition at the profile surface in some neighbor- 

hood of the leading edge where the profile is assumed to be rigorously rectilinear. We 
have there 6 = @ and 

0, (r, P) = 0 (2.1) 

We thus obtain the homogeneous problem (1.2), (1.4), (2.1). 
Let us first consider the case of supersonic flow (MO > 1, i. e. Cc < a, . 

Obviously 

01 = f (5 + 71) - f (E - rl), ox = c - f (E + q) - f (E - 7) 

xf (2) + f (CLZ) =- *c, 2 = (1 + k)r,, h+1 
X=h-_l 

i-k 
P =-x-qx 

where C Is an arbitrary constant. Substituting function F (2) = f (2) - c/2, 
for f (z) , we obtain the functional equation 

F (p) = --xF (z) (2*2) 

Let us estimate p and x. Since h > 0, hence 1 x 1 > 1 and the inclina- 
tion of the related characteristic is greater than that of the shock wave, i. e. (MO” 
- 1)-‘,* > tg (a - b), hence 0 < k < 1 and, consequently 0 < p < *. 

Iterations (2.2) yield F (p”z) = (-%)*F (2). We pass to Limit for n-t co. 
Since p” + 0 and x” -+ 00 hence in the class of functions bounded in theneigh- 

borhood of the leading point Eq. (2.2) has the unique (trivial) solution F (z) G 0. 
Consequently 8, = ur zz 0 and the shock wave is rectilinear. 

3. We pass to the case of subsonic flow (MO < 1) in which (1.2) is converted 

to the Cauchy-Biemann type system. For its solution it is convenient to pass to co- 

ordinates (fi, CD): E = R cos Q, and ?) = R sin a. Obviously 8, = R’sin 
Y@, where tg (Y arctg k) = h, i.e. 

v=v,= scm + arctg h 
arctg k 

(3.1) 

Because of the boundedness of solution only positive Y, ought to be selected. 
The whole sequence of Vm “originates at infinity” when U = a,. As a increases, 
only v0 passes through zero. The remaining yrn are positive, as implied by the 
properties of h. Curves of several first ‘Vm at &f, = 3 are shown in Fig. 2, 
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where the negative part of Y o 
=2m-,f. Thus 

is represented by the dash line. Note that ym (n / 2) 

0 = 0, + CR%in vQ, + . . . (3.2) 

For determining density we use the equation dS/& = 0; where &’ = 
and S = ss + s, +. . . . It can be shown that S, = pO-Y (PI -co2pl). 

pp-y 

Fig. 2 

At the shock wave piw) = D,P,Cw) and plCwLo, = DsRY , hence SIW = 
DdP- Since S, = f (q) = f (R sin a), hence finally S, = D, (Rsin@)V, from 
which 

p = PO + R” (aicos Y@ + a, sin%)) + ,,. (3.3) 

Velocity q is obtained with the use of variations of the Bernoulli integral 

p = q. + Rv (a,cos Y@ + a., sin”C’) + s . . (3.4) 

when 8i is known, it is possible to show that in the neighborhood of the leading 
edge the wave equation can be represented in the form 

y = 5 tg a + xr+v + . . . 

We stress the difference in the behavior of gasdynamic functions when Q 4 0. 
It is particularly noticeable when v < I , since then pi and q1 are no longer 
differentiable along the profile surface. 

Formulas (3.2) -(3.4) provide a solution of the problem with an accuracy within 
the specific exponent vm which is dictated by the problem as a whole. The number 

of zeros of Pi (cp) (which coincides with the number of internal extremal points 8, 

(cp)) is equal to the number m , while the number of zeros of 8, (cp) is by one 
smaller of the ordinal number of the ekponent in the sequence of po&tive Y , i. e, in 
the interval CL* < a < a* the number of zeros of 6, is equal m and when 



Neighborhood of the leading edge of a profile 521 

a>a* itisequal m- 1, since yI. becomes the first positive exponent. Thus 

the number of zeros uniquely determines Vm and, consequently, also the first term 

of expansion in the neighborhood of the singularity. In certain cases such information 

may be obtained. 
The quantity Y defines the smoothness of 8, (R, 0). In connection with this 

it is possible to isolate the value cc = a~ (a* < ax < a*) for which v. = 1. 

The corresponding point of the shock wave is called the Crocco point. It should be 

noted that the shock wave curvature at the leading edge if finite when CL= CzK, 

vanishes when o! < aK, and becomes infinite when a > UK. Specific values of 

the basic “support” angles a,, a~ and a* and the related values of fi are tabulated 
below 

1.25 1.1590 870 1.1936 908 1.2311 923 

a:;: 1 .OS66 2041 1.1274 2098 1.1622 2114 
1.0731 3963 1.1076 1 .i287 

:zE 
5178 1.1182 ~ 1.1357 i%: 
5936 1.1387 5947 

4.0 i:i389 :*:E: 1.1530 6767 
5.0 % 

1X.8 
EE 

% :::;;; I .I621 7176 

1:1752 ;E! i:i768 
7601 1.1730 7601 

20:o 
7754 1.1773 

1.1812 7905 i.1816 7905 1.1817 E 

Let us now touch upon the fallacy shared by some authors (see, e, g., [S] ). Vanish- 
ing of the exponent ~a at transition from the weak section of the shock wave to the 

strong one can neither be a proof nor even an argument to support the theory of non- 
existence of an attached shock wave of the strong kind. Generally speaking, the ex- 
pansion may begin with any of the possible exponents, and the whole difference bet- 

ween strong and weak shock waves lies in the structure of small per~rba~o~ of 
and P,. 

8, 

p*.lo~ a* p*.io* 

4. We shall illustrate the above results on some transonic flows, using for this 
the hodograph plane u, v (U is the velocity component along the x -axis and v the 
component perpendicular to it). We shall consider a problem of the type of Frankl’s 
problem [4,5]- the flow past a wedge of finite dimensions-or, more exactly, that 
of its varieties in which the shock wave is attached to the leading edge. 

In such problems the investigation of the leading edge neighborhood in the physical 

plane is equivalent to the investigation of the neighborhood of point 0, of intersec- 
tion of the shock polar w with the straight line b (V=U tg 6). There are generally 

two such points (see Fig. 3). 
Motion in the physical plane along some small arc d, : {r = 8, #I < ‘p < a} from 

the body contour to the wave is represented in the hodograph plane by the motion of 

the corresponding point in the neighborhood of O1 (or 0s ) from the straight line 
b to the polar w. Its polar angle 6= arctg (v / u) differs from t10 = 6 by 

some small quantity which with an accuracy within the constant multiplier coincides 
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with the soIution of the problem of 
small perturbations, i. e, e.= 0, + 
CB1. 

We plot in the hodograph plane 
the lines that are images of isobars 

(% and T(Z in Fig. 3, where s 
is the sonic line). In transotic app- 
roximation these lines coincides 

with lines of constant values of the 

velocity modulus, and are, thus, 

Fig. 3 circles whose centre is at the co- 

ordinate origin. In whht follows 
only their orthogonally to line UP is important, Since the isobars pass through C*iV 
the perturbations of Pr on them vanish. 

Let the neighborhood w : {r < e, /3 < Q, <a] be mapped onto some region II. 
We shall show that the angular dimension of Q depends on the ordinal number of the 

exponent Y, using for this the dependence of the number of zeros of P, (cp) on m. 

Let us, first, consider the weak shock wave (0,). Let 4 = V&J* Then P1 #O, 
the image of de does not intersect nl and, consequently, the aperture angle of 

62 is acute. When Q = vl that angle is in the interval of st to s/+ If m > 1, 

the motion along d, is represented in the hodograph plane by the motion of a point 

which goes around 0, more than once, because of which the inverse transformation 

becomes ambiguous. 

It is possible to show in exactly the same way that in the case of a strong wave 
(0,) an obtuse aperture angie of region f2 corresponds to the first positive exponent 

(which is now y1 ), and to the second an angle comprised in the interval of 3/2x 
to 23%. Ambiguity appears with higher Y,. 

The first two positive exponents, thus, have some kind of priority, since to them 

correspond one-to-one transformations of the hodograph (in the leading edge neighbor- 
hood), There remains, however, the ambiguity in the selection of one of the two ex- 
ponents which in this case can only be removed by considering the problem as a whole. 

The flow Fast a double wedge when the Mach number in the space between the wedge 

and the shock wave is less than unity (Fig. 4, a). 

V 

Fig. 4 
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If the length 01) is fairly large (as compared with WA ) 8 the velocity along it 

is not mono~~c, first it increases, reaches ma~mum at some point M , and then 

decreases vanishing at W. In this case &fl, the image of point M , is on the con- 
tinuation of segment D,O1 between the shock polar and the sonic line sl (Fig. 4, 
b). Region ACBOWpasses to region with slit A,'A,"B,O,M,W, . As OW decreases, 
the slit O,M, decreases and at some instant altogether vanishes (the second case). Furth- 

er decrease of OD yields regions of the type of A,'A,"B,P,O,D, where there is an- 
other slit O,P, along the shock polar (the third case). Its length increases in propor- 

tion to the decrease of OW l The double passage on the polar obviously shows the 

presence of an inflection point on the shock wave (Fig. 4, c). 
In tbis example the neighborhood of point Or is interesting. In the first case the 

angle B,O,M, is acute, in the second it is obtuse, and in the third it is again acute 

(but situated on theother side of point Or ). This means that the expansion of iimc- 

tion 6 in the neighborhood of the leading edge is of the form 8=8@+CRV@ 

sin v@ f. . ., where eO, v0 and C depend on the position of point W, when D 
is m a neutral position, c (w) passes through o . At that instant the first term of 
expansion (different from 8, ) vanishes and becomes included in the next following 

term which is related tothe region of the obtuse angle, as shown above, in the hodo- 
graph plane. 

A similar situation occurs in the flow past a double wedge in a channel when the 
larger angle exceeds the critical value. The same ~o~iderati~ apply to the problem 
of flow past a straight wedge in a channel. It is clear that the selection of structure 

of solution in the neighborhood of the leading edge can only be made after assessment 
of the problem as a whole. 

5. Let us revert to the initial statement for system (1.2) but consider now the in- 

homogeneous problem. We assume the equation of the contour in the leading edge 
neighborhood to be of the form y = 2 tg fi -j- UP + . . ,, s > 0. For the 
slope of the streamline along the contour we have 6 = fi + a (1 + s) r* eosa+* p, 
Hence the boundary condition (2.1) is replaced by 8, = cr* when rp = fi. 

In the supersonic case (M, > 1) the passage to coordinates (E, ?J) yields 8, 

= cr:, and the solution is defined by formulas 

0, = c D” (E + rlj* + (4 - Q(E - V)‘I 
@*I) 

'Jl = c I---h (E + rl)' + (1 - WE - #I, h = p'/ (x + p*> 

The constants p and 1c have been determined in Sect. 2 and, consequently, sat- 

isfy the inequalities 1 x 1 > 1, 0 < p < 1 , which eusures the finiteness of h, 
i.e. the existence of solution throughout the range of CL < u*. The uniqueness 

(triviality of solution of the homogeneous problem) has been already proved. 

For a> cc* it is necessary to pass to coordinates R, cf, in which the bound- 
ary conditions on the contour (for CD = 0) are 8, = CR" , and for 6, and or 
we obtain 

6, = CR’ (co3 srft + D sin @) 

(5 = CR' (-sin SD + D cos s(D) (5.2) 
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D = (h tg s@(@ + 1) I (h - tg sG-@‘) 

Thus formula (5.2) provides the solution of the problem in the general case, i. e. 
when Za # tg s@@). However it is not unique, since there exists, as previously 
shown, a sequence of nontrivial functions 8, and or. Hence the obtained result 

needs c~rification. 

Let s be smaller than the first positive exponent Y , Then formulas (5.2) actu- 
ally provide the first expansion term. If, however, s > v, the derived solution must 
be discarded, since the homogeneous problem brings stronger perturbations. From the 
geometrical point of view this means that in the fi’irst. approximation with s ( v the 
flow reacts to the profile curvature, while with S > V does not. The first to note 
this effect was Guderley [6] who came across it in transonic ilow inv~tigations, 

Let us consider the particular case of h = tg &I@), in which a solution of 
the form (5.2) is not possible, and the expansion must contain logarithmic terms. For 
its derivation we use the harmonicity of 8, (R, a). We pass from the plane z = 
Ma’ to the plane w = zs = R, exp (icDi), with R, = R” and or = 30. 

Function g (R,, @r> = 0, (R, 0) is also harmonic. We represent the bound- 
ary condition at the shock wave in the form of equality to zero of the oblique derivat- 

ive (1.5). Owing to the conformaltty of transformation the angle x between the 
direction of differentiation and the boundary does not change, only the boundary it- 
self turns de, = CD(w) -+ dB, = C&(w) = s@(W). The condition of impermeability is 

simplified 

g P,, 0) = R, (5.3) 

bet us determine g. We have tg x r= h and t& v@@) = h = &J S@@‘) 

= tg rDP’. Hence Q,(w) = x when 01 < a* or aI@‘) = rc -j- x when CC 

> a*. m both cases the direction of differentiation is now parallel to the boundary 

@)1 = 0. We introduce the coordinates $, = R, cos a,, 71 = RI sin @I and 
reduce the problem to the deter~ation of function g (RX, @I) harmonic in the 

angle 0 < ml < @I@) which satisfies the boundary conditions 

We pass from g to 0 T= r3g/@,. The boundary conditions for @I are @ = 1 

when CD, == 0 and 8 = 0 when Q1 = @r@f_ Hence 

Reverting to g we obtain 

g = c (r1) + El 4 ---c.- 2a4w’ 
+ 
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where the term c (qi) is determined by the harmonicity of g . 
The boundary condition at the body yields A = B = 0. Reverting to Rr and 

@r and then to R and @, we finally obtain 

0, = aR% R -+ bR” (5.4) 

i 
a= ----sins@, b= @(W - Q,coss@ $ @W 

The formula for or (R, 0,) is similarly derived. The logarithmic term is also 
contained in the wave equation. 

Note that in the obtaineci asymptotics both terms must be retained in spite of the 
fact that the first tends to zero more slowly. The point is that their derivatives with 
respect to R are of the same order. 

In concluding we shall consider the effect of inhomogeneity of the oncoming stream. 
For simplicity we confine this to the case of local linearity in the leading edge neigh- 
borhood and a rectilinear profile. The system of equations for small perturbations and 
the condition on the body do not differ from those of the homogeneous problem, while 
conditions at the shock wave assume the form 

Aa, - B8, = Cr = Cl5 = C,q, q = kE 

It is obvious that when v # 1 the principal term of expansion is obtained from the 
solution of the inhomogeneous problem 

8 = R (II, sin a, + D, cos D), v > 1 

or from that of the homogeneous problem 

0 = RvD, sin v@, v < 1 

I& however, v = 1 , then by passing from 8, to 0 we obtain a problem who- 
se solution 0 = CQt, is elementary. From this 

8, = D, (CD) R In R + D, (0) R 

which for s = 1 coincides with (5.4) with an accuracy to the coefficients. 
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